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ABSTRACT 

Let Br(K) denote the Brauer group of a field K and PS(K) the 

projective Sehur subgroup. 

i. Let K be a finitely generated infinite field. Then PS(K) = Br(K) 
if and only if I (  is a global field. 

2. Let /x ~ be a finitely generated infinite field, and let K((t)) denote 

the field of formal power series in t over / i  v. Then P S ( K ( ( t ) ) )  --- 

B r ( K ( ( t ) ) )  if and only if K = Q. 

1. I n t r o d u c t i o n  

Let K be any field. The p r o j e c t i v e  Schur  ( s u b ) g r o u p  P S ( K )  of a field K is 

the subgroup of the Brauer group B r ( K )  generated by (in fact, consisting of) all 

classes that are represented by a projective Schur algebra A. A finite dimensional 

K-central simple algebra A is a p r o j e c t i v e  Schur  a l g e b r a  over  K if the group 

of units A* of A contains a subgroup F which spans A as a k-vec tor  space and is 

finite modulo the center, i.e., K ' F / / ( *  is a finite group. The notions of projective 

Schur algebra and the projective Schur group are the projective analogues of 

Schur algebra and the Schur group of K. These analogues were introduced in 

1978 by Lorenz and Opolka [10]. A symbol algebra is a projective Schur algebra in 

an obvious way (indeed, let A = (a, b)n be the symbol algebra generated by x and 

y subject to the relations x ~ = a c K*,  y~ = b ~ K*,  yx  = ~ x y ,  where ~n E K* 
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is a primitive n-th root of unity. I t  is easy to see that  F = < x, y > spans A as a 

K-vector  space and K*F/K* ~- Z /nZ  × Z/nZ.  In particular, K*F/K* is a finite 

group). Invoking the Merkurev-Suslin Theorem, one deduces that  if K contains 

all roots of unity (resp. contains the nth  roots of unity), then PS(K)  = Br(K)  

(resp. P S ( K )  D_n Br(K))  where the subscript n denotes n-torsion. The subgroup 

P S ( K )  may be large even if roots of unity are not present in K.  Indeed, if K is a 

number field, then P S ( K )  = Br(K)  as shown in [10]. Here one uses the fact that  

for K a number field, any element in Br(K)  is split by a cyclic extension which 

is contained in a cyclotomic extension of K.  In [2] it was shown that ,  in general, 

the projective Schur group PS(K)  is properly contained in Br(K) .  Examples 

given there were as follows: 

1. K a rational function field k(x) over any number field k. 

2. For power series fields K = k((x)) (over a number field k) the situation 

depends on the field k. For instance, if k is a number field which is not totally 

real, then PS(K)  ~ Br(K) .  On the other hand, the Kronecker-Weber Theorem 

implies that  PS(Q((x)))  = Br(Q((x)). 

In this paper we prove that,  at  least for finitely generated fields and formal 

power series fields over finitely generated fields, the known examples of fields K 

for which P S ( K )  = Br(K)  are the only ones. Namely we have the following two 

theorems. 

THEOREM 1.1: Let K be a finitely generated infinite field. Then P S ( K )  = 
Br(K)  if and only if K is a global field. 

THEOREM 1.2: Let K be a finitely generated infinite field. Then PS(K(( t ) ) )  = 

Br(K(( t ) ) )  if and only if K = Q. 

2. Proof s  

In what follows, Fab, ~2radab, Fcyc and Fk~m will denote the maximal abelian 

extension, the maximal radical abelian extension, the maximal cyclotomic exten- 

sion and the maximal Kummer  extension, respectively, of a field F. (A radical 

extension of F is an extension of F which is generated over F by elements having 

finite (multiplicative) order modulo F*.) 

Proof of Theorem 1.1: If K is a global field, then PS(K)  = Br(K)  by [10] (see 

also [2]; the proof for number fields is also valid for global function fields). For the 

converse, let K be finitely generated of transcendence degree >_ 1 over a global 

field. Then K is a finite extension of a rational function field k(Xl . . . .  , xn) = F, 
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where k is a global field and n _> 1, and without loss of generality k is algebraically 

closed in K. By [2, Corollary 3.3], if p is any prime for which k does not con- 

tain the pth roots of unity, then considering p-primary components, PS(F)p  C_ 
Br(Fcyc /F)p  , and Br(F)p/Br(Fcyc/F)p  is infinite. Assume in addition that 

p ~ [Kcy~ : Fcyc]. Take any element a E Br(F)p lying outside of Br(Fcyc/F)p. 
Suppose PS(K)p  = Br(K)p.  Then resh'/F(a ) E P S ( K ) p  C Br(Kcyc/K)p,  
hence 

resK~c/F(a) = resK~dKreSK/F(a)  ----- 0 = resKc~c/F~resF~¢/F(a). 

Applying COrKc~/F~, we get 

[Kcyc : Fcyc]resFc~c/F(a) = O. 

Since resFc~,/F(a) is of p-power order # 1 and p ~ [Kcyc : F~yc], we have a 

contradiction. | 

Remark: The same proof works for K finitely generated over any Hilbertian 

field, provided there are infinitely many primes p such that K does not contain 

the pth roots of unity. 

Problem: Can one characterize the nonfinitely generated fields for which P S ( K )  
= Br (K)?  Theorem 1.2 is a partial result in this direction. 

The proof of Theorem 1.2 is based on the following two lemmas. 

LEMMA 2.1: Let K be any field. Then PS(K(( t ) ) )  = Br(K(( t ) ) )  i f  and only i f  
the following two conditions are satisfied: 

(i) P S ( K )  = Br (K) ,  

(ii) Kab = K~adab. 

Proo~ By [7, Theorem 2.5], 

P S ( K  ( (t) ) ) ~- P S (  I() • Hom(G(Kradab/K),  Q/Z).  

Since this isomorphism is the restriction of the isomorphism of Witt 's theorem 

[13, p. 186] 

B'r(K((t))) ~- Br (K)  @ Hom(GK,  Q/Z) ,  

the result follows immediately. | 
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LEMMA 2.2: Let K ~ Q be a global field, p a prime number. Then there exists 

a cyclic extension F / K  of degree p not contained in Kcyc. 

Proo~ Assume first that  K is a global function field. For any p, there exists 

a unique cyclic extension of degree p contained in Kcyc. By [9, p. 396] or [11, 

p. 275] Z/pZ × Z/pZ is realizable as a Galois group over K. The result follows 

immediately. Now assume K is a number field different from Q. Let N be its 

normal closure over Q, G = G(N/Q), H = G(N/K) .  Consider Z/pZ as an H- 

module with trivial action, and let A be the induced G-module indCHZ/pZ [12, 

p. 28]. We have an embedding problem given by the split exact sequence 

1 - - + A - + G - + G - + 1  

where G is the semidirect product of G and A with the given action of G on 

A. By Scholz's theorem [9, p. 396] or [11, p. 275], this embedding problem has 

a proper solution with solution field L D N. In particular, G(L/Q) ~ G. By 

construction, there is a Z/pZ-extension E of N contained i n L  such that  E / K  

is Galois with group H × Z/pZ,  and the normal closure of E / Q  is L. It follows 

that there exists a Z/pZ-extension F / K  such that E = FN. 

CLAIM: F is not contained in Kcyc. If it were, then F N  = E would be contained 

in N ~  = NQ~c.  But G acts trivially on G(N~c/N) ,  hence every intermediate 

field between N and Ncyc is normal over Q, so in particular E is normal over Q, 

contradiction, since E # L (because of the assumption K ~ Q). | 

Remark: We thank Moshe Jarden for pointing out that the proof above for 

number fields holds with Q replaced by any hilbertian field k, and with Kcyc = 

KQcyc = KQab replaced by Kkab. Thus the lemma holds for any hilbertian field 

K which is a proper finite extension of a hilbertian field. 

Proof of Theorem 1.2: PS(Q((t))) = Br(Q((t)) was noted already in [2]; it also 

follows immediately from Lemma 2.1. For the converse, let K be a finitely gener- 

ated field such that PS(K(( t ) ) )  -- Br(K((t))) .  By Lemma 2.1 and Theorem 1.1, 

K is a global field, and Kab -~ Kradab. We show that the latter condition holds 

only for K = Q. There exists a prime p such that K does not contain the pth 

roots of unity. We claim that if K ~ Q, then there exists a cyclic extension F 

of K of degree p which is not contained in Kradab, which yields the desired con- 

tradiction. For this it suffices to show that F is not contained in K~y~, since if it 

were contained in K~d~b = t(cycKkum [2], it would be contained in the maximal 

p-subextension of Ilradab, which is the composite of the maximal p-subextensions 
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of Kcyc and Kkum respectively. But  since K does not contain the p th  roots  of 

unity, the max imal  p-subextension of Kkum is K itself. The  claim now follows 

from L e m m a  2.2, complet ing the proof  of Theorenl  1.2. | 
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